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ABSTRACT

Acoustic images present views of underwater dynamics, even in high depths. With multi-beam echo sounders (SONARs), it
is possible to capture series of 2D high resolution acoustic images. 3D reconstruction of the water column and subsequent
estimation of fish abundance and fish species identification is highly desirable for planning sustainable fisheries. Main hurdles
in analysing acoustic images are the presence of speckle noise and the vast amount of acoustic data. This paper presents a level
set formulation for simultaneous fish reconstruction and noise suppression from raw acoustic images. Despite the presence of
speckle noise blobs, actual fish intensity values can be distinguished by extremely high values, varying exponentially from the
background. Edge detection generally gives excessive false edges that are not reliable. Our approach to reconstruction is based
on level set evolution using Mumford-Shah segmentation functional that does not depend on edges in an image. We use the
implicit function in conjunction with the image to robustly estimate a threshold for suppressing noise in the image by solving
a second differential equation. We provide details of our estimation of suppressing threshold and show its convergence as the
evolution proceeds. We also present a GPU based streaming computation of the method using NVIDIA’s CUDA framework to
handle large volume data-sets. Our implementation is optimised for memory usage to handle large volumes.

Keywords: 3D reconstruction, Level Set method, Acoustic images, Noise suppression, GPU, CUDA.

1 INTRODUCTION

One of the areas of interest in fisheries research is to
reconstruct moving schools of fishes in a water column.
Presence of strong speckle noise is a major problem in
segmenting acoustic images. This makes selection of
a threshold for binary segmentation very difficult [23].
The main contribution of this paper is to design a level
set formulation that is well suited to reconstruct fishes
from acoustic images captured using multi-beam echo
sounders. The evolution of the level set equation is cou-
pled with a solution of another differential equation that
effectively removes the noise, enabling the level set to
converge to the objects of interest in the image.

Although hyperspectral underwater imagers provide
better imagery of underwater scenes, multibeam echo
sounders are not outdated by them and complement
them very well. The hyperspectral optical devices have
very short range (sometimes less than 1 m in the North
sea and in the Baltic). Acoustic sensors are still widely
used in underwater surveys.
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Speckle noise in acoustic images is generally mod-
elled by the Rayleigh distribution [6, 5]. Quidu et al.
[23] estimate an optimal image filter size to compute
an estimate of a good threshold by pixel correlation.
Gagnon [7] shows numerical results of a wavelet do-
main based method for noise removal. Chen and Ra-
heja [4, 1] show a wavelet lifting based method where
the spatial correlation of acoustic speckle noise is bro-
ken by multiresolution analysis. In another approach
to use wavelet based methods, Isar et al. [10] present
a Bayesian-based algorithm. In a novel attempt to use
the Markov Random Field (MRF) to segment acous-
tic images, Mignotte et al. [17] use an unsupervised
scheme by employing an iterative method of estimation
called Iterative Conditional Estimation (ICE). The au-
thors used a maximum likelihood estimation to com-
pute the MRF prior model.

Krissian et al. [11] provide a variation of the
anisotropic diffusion process [22] constrained by
speckle noise model. Anisotropic diffusion provides an
intelligent way to perform diffusion without affecting
prominent edges in an image.

Level set based methods have been shown to suc-
cessfully restore noisy images [24]. Osher and Rudin
[20] developed shock filters for image enhancements.
Malladi and Sethian [16] have shown image smoothing
and enhancement based on curvature flow interpreta-
tion of the geometric heat equation. In a more recent
approach to use level set methods for acoustic image
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segmentation, Lianantonakis and Petillot [14] provide
an acoustic image segmentation framework using the
region based active contour model of Chan and Vese
[2]. The authors comment that the level set based model
has good regularisation properties similar to those of a
Markov random field [14].

A relevant work by Balabanian et al. [1] shows an
interactive tool for visualization of acoustic volumet-
ric data using a well known volume visualization tech-
nique called Ray-casting. Authors in [1] develop a tool
for manual selection by region growing and visualiza-
tion of moving fish schools using graphics hardware.
The work presented in this paper is intended to develop
mathematical models to automatically extract meaning-
ful features from acoustic data with no user interaction.
This work does not provide any tool for visual analysis,
rather it presents a computational framework for noise
suppression and 3D reconstruction.

This paper concentrates on using the level set meth-
ods for simultaneous suppression of noise and 3D re-
construction of relevant features. We limit features of
interest to fishes from acoustic images and provide a
level set based framework for acoustic image segmen-
tation. Image restoration techniques based on level set
evolution are generally oriented to segment the image
or to remove noise from it. Work by Lianantonakis
and Petillot [14] is closest to our approach since they
use active contours using Mumford-shah functional for
seabed classification, but together with extraction of
Haralick feature set for textural analysis. Our method
differs from theirs since it is not possible to rely on tex-
ture based classification in the absence of any specific
textures in the image.

Since acoustic data resulting from marine surveys
can result in gigabytes of information, we employ
GPU (Graphics Processing Unit) based computations
for 3D reconstruction. The GPU is not very suitable
for data intensive applications due to unavailability
of large memory on commodity hardware. A number
of publications suggest schemes to circumvent this
situation by performing computations in a streaming
manner [13, 12, 9], but most of the implementations
process 2D sections to generate a 3D reconstruction.
We present a Level Set method implementation with
computations performed entirely in 3D using the
3D textures (read only) available to the CUDA 2.0
framework. CUDA (Compute Unified Device Archi-
tecture) is a parallel programming model and software
environment designed to develop application software
that transparently scales its parallelism to leverage the
increasing number of processor cores on the GPU.
It allows programming computationally intensive
algorithms to take advantage of the available graphics
hardware. Our method is streaming and is optimised
for memory usage, consuming only twice the CPU
memory of the input volume.

The paper is organised as follows. In Section 2, we
present the preliminaries on the active contour model.
In Section 3, we present the work of Chan and Vese [2]
on minimising the Mumford-Shah functional in images.
In Section 4, we present our work on the noise suppres-
sion model which is solved together with the level set
equation. In Section 5, we present our CUDA imple-
mentation for 3D reconstruction of the fishes based on
the parallelisation of the results of Section 4. In Sec-
tion 6, we present the experimental results. Finally we
conclude the paper in Section 7.

2 BACKGROUND
Let an image I(x,y) be defined on a bounded open sub-
set Ω : {(x,y)|0≤ x,y≤ 1} of R2, with ∂Ω as its bound-
ary. I takes discrete values between 0 and (2n − 1)
where n is the number of bits used to store intensity.
The basic idea in active contour model is to evolve a
curve C(s) : [0,1]→ R2 by minimising the following
energy functional [19]:

E(C) = α

∫ 1

0
|C′|2 ds+β

∫
0
|C′′|ds−λ

∫ 1

0
|∇I(C)|2 ds,

where, α , β , and λ are positive parameters. In the
above energy functional, the evolution of curve C is
controlled by the internal energy (first two terms that
define the smoothness of the curve) and the external en-
ergy (the last term that depends on the edges present in
the image). The curve C can be represented by an im-
plicit function φ , C = {(x,y)|φ(x,y) = 0}, where the
evolution of C is given by the zero level curve at any
time t of the function φ(x,y, t).

With this formulation, an edge detector is defined as
a positive decreasing function g(∇I) based on the gra-
dient of image [22] such that

lim
|∇I|→∞

g(∇I) = 0

Therefore, the zero level curve evolves in the normal di-
rection and stops at the desired boundary where g van-
ishes.

Evolving the curve C in normal direction amounts to
solving the partial differential equation (PDE) [21]

∂φ

∂ t
= |∇φ |F (1)

with the initial condition φ(x,y,0) = φ0(x,y), where
φ0(x,y) is the initial contour. Motion by mean curva-
ture allows for cusps, curvature and automatic topolog-
ical changes [21, 3]. This results in the speed function
F = div

(
∇φ

‖∇φ‖

)
in terms of the curvature of φ

∂φ

∂ t
= |∇φ |div

(
∇φ

|∇φ |

)
,φ(x,y,0) = φ0(x,y)

where div(·) is the divergence operator.
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3 MINIMISING THE MUMFORD-
SHAH FUNCTIONAL IN IMAGE

Chan and Vese [3] provide an alternative approach to
the edge based stopping criterion. The authors sug-
gest the stopping term based on Mumford-Shah seg-
mentation techniques [18]. The motivation behind us-
ing this alternative stopping term is that in many cases,
the edges in an image are not very well defined. Either
it is ambiguous to position the edges across the gradient
due to smoothly varying intensities [3] or it is difficult
to select prominent edges due to presence of noise (as
in the case of acoustic images). The method of Chan
and Vese [3] is minimisation of an energy based seg-
mentation. Assuming that the image I is composed of
two regions of piecewise constant intensities of distinct
values Ii and Io, and that the object of interest is repre-
sented by Ii, we define the curve C to be its boundary.
Using the Heaviside function H, and the Dirac-Delta
function δ0,

H(z) =
{

1, if z≥ 0
0, if z < 0 , δ0(z) =

d
dz

H(z)

the energy functional is formulated as

E(c1,c2,C, t) =µ

∫
Ω

δ0(φ(x,y, t))|∇φ(x,y, t)|dxdy

+ν

∫
Ω

H(φ(x,y, t))dxdy

+λ1

∫
Ω

|I(x,y)− c1|2 dxdy

+λ2

∫
Ω

|I(x,y)− c2|2 dxdy (2)

where, µ ≥ 0, ν ≥ 0, λ1,λ2 > 0 are fixed parameters.
c1 and c2 are average intensity values inside and outside
C. The constants c1 and c2 can also be written in terms
of I and φ

c1 =
∫

Ω
I(x,y)H(φ(x,y, t))dxdy∫

Ω
H(φ(x,y, t))dxdy

, (3)

c2 =
∫

Ω
I(x,y)(1−H(φ(x,y, t)))dxdy∫

Ω
(1−H(φ(x,y, t)))dxdy

(4)

The variational level set approach gives the following
Euler-Lagrange equation [3]

∂φ

∂ t = δε(φ)
[
µ∇ · ∇φ

|∇φ | −ν−λ1(I− c1)2 +λ2(I− c2)2
]

(5)

with the initial condition, φ(x,y,0) = φ0(x,y) and

δε(z) =
∂

∂ z
Hε(z) = π

−1
ε
−1
(

1+
z2

ε2

)−1

(6)

where, the regularised one-dimensional Heaviside
function is given by:

Hε(z) =
1
2

(
1+

2
π

tan−1
( z

ε

))
.

Despite the fact that this model has advantages
over the edge based model in that it is able to detect
boundaries with smoothly varying intensities and
blurred edges, the main limitation comes from the fact
that it can only discriminate regions with different
mean intensities [14]. In particular, strong textures
pose a problem with this approach. Lianantonakis
and Petillot [14] solve this problem by extracting the
Harlick feature set based on the co-occurance matrix.

The acoustic images considered by Lianantonakis
and Petillot [14] are of the seabed. Such images show
strong textural variations of the bottom surface of the
sea. In this paper, we restrict ourselves to acoustic im-
ages of freely swimming fishes. While such images are
also corrupted by speckle noise, they do not show spe-
cific textural patterns. Figure 1(a) shows part of such
an image where the fish cross sections are discrimi-
nated by very high intensities compared to the back-
ground. The presence of reflectance from air bubbles
mixing into water, also contribute to the noise. While
working with level sets, a standard procedure is to keep
φ to a signed distance function [19]. A direct appli-
cation of the level set equation given by equation (5),
with φ(x,y,0) = 0 initialised to set of squares regularly
distributed over the image, shows that the evolution of
the level set eventually stops at the wrong place (see
figure 1(b)). Furthermore, lack of any specific textu-
ral patterns leads us to formulate a successive noise
suppression scheme where the Mumford-shah energy
functional is minimised while simultaneously removing
noise from the image. The later aids in fast convergence
of the level curve in our formulation.

Iteration:0+1i/100

(a) Initialisation contour.Iteration:50/100

(b) Result at convergence.

Figure 1: Application of the level set equation (5) .
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4 NOISE SUPPRESSION MODEL
As discussed before, acoustic images suffer from heavy
speckle noise. At first thought, it might sound reason-
able to apply a global threshold to the image to get
rid of the noise. However, this is not a plausible op-
tion since for a particular chosen threshold there might
be echo intensities of fishes lower than it and therefore
such a threshold will result in loss of information [25,
sec. 5.4.6, 6.3]. An adaptive threshold might also not
provide a solution since the speckle has a high local in-
tensity, and therefore could show false positives. There-
fore, we resort to global energy minimising methods to
suppress noise.

Considering the image I to be time varying, the basic
idea behind noise suppression is to solve the following
equation as an update step to the level set equation res-
olution in a single pass:

∂ I(x,y, t)
∂ t

= k ·max(0, ĉ− I(x,y, t)) (7)

where k is a constant and ĉ is a scalar parameter that
is computed as an optimal threshold at any time step t
based on φ(x,y, t) .

The computation of ĉ is based on the bounded subset
Ii given by

Ii(x,y, t) = I(x,y, t) ·Hε(φ(x,y, t)).

The values given by the set Ii are used to compute the
weighted median [26] as shown in algorithm 1 which is
used as ĉ at that particular time step t.

Input: I(x,y, t), Hε(x,y, t)
Output: ĉ
V = {vi : vi = I(x,y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1,n], n = l ·m}
W = {wi : wi = Hε(x,y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1,n], n = l ·m}
Sort V in ascending order
W ←W\{wz}∀wz = 0
V ←V\{vz} ,{vz : vz ∈V, ∀z where wz = 0}

S←
n

∑
k=1

wk, wk ∈W

Find largest index i such that
i

∑
k=1

wk ≤ S
2 ,wk ∈W

Find smallest index j such that
n

∑
k= j

wk ≤ S
2 ,wk ∈W

Median M = {vi,v j}
ĉ←min(vi,v j)
Algorithm 1: Computation of weighted median

The use of median filtering to remove noise is not
new in image processing [8, 15]. We now show that
the estimate of ĉ based on the weighted median is a
good approximation for the grey-level threshold that

separates the noise from the signal, and is robust in a
way that the evolution of the level set converges with
increasing t.

Hε(z) attains values close to zero for regions outside
C and values close to one inside C. In fact, lim

z→∞
Hε(z) =

1.0 and lim
z→−∞

Hε(z) = 0.0. At the start of level set evo-

lution, Ii covers most of Ω and therefore, Hε(z) attains
values close to one for most of the intensity values. This
results in computation of ĉ which is equivalent to an un-
weighted median for values in Ii. A median is the cen-
tral point which minimises the average of absolute devi-
ations. Therefore, a median better represents the noise
level when the data contains high intensity values that
are fewer in number, and a majority of intensity values
that correspond to the noise. As a result, the initial iter-
ations of the solution suppress the intensity values that
are less than the median to a constant level (the median
itself). One should expect the median value to increase
as the level set contracts, but since we use a regularised
Heaviside function as weight for the intensity values,
the weighted median converges to zero since most of I
contains intensity values of zero with near-zero weight.

Other variations of estimation of ĉ are certainly possi-
ble, but we find that a weighted median based approach
results in effective noise removal with very small in-
formation loss. For instance, a value of ĉ taken to be
c1, the mean intensity inside C, does a similar suppres-
sion but with a high signal loss compared to the former.
Furthermore, the mean does not converge as fast as the
median does and might result in relatively higher values
for large fish cross sections. It must be noted however,
that the computation of the median is costly as com-
pared to that of the mean.

5 CUDA IMPLEMENTATION FOR 3D
RECONSTRUCTION

Equation (5) can be solved by discretization and lin-
earization in φ [3]. Discretization of equation (7) in I
gives

In+1(x,y)− In(x,y)
∆t

=k ·max(0, ĉ− In(x,y))

=
{

0, if In(x,y)≥ ĉ
k · (ĉ− In(x,y)),otherwise

(8)

With k = 1
∆t , and tn+1 = tn + ∆t. The above time dis-

cretization yields the following

In+1(x,y) =
{

In(x,y), if In(x,y)≥ ĉ
ĉ, if In(x,y) < ĉ (9)

Acoustic images captured by echo-sounders are gener-
ally taken as planar image scans by moving the echo-
sounder in one direction, thereby sweeping a volume.
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Let us denote individual images as I(x,y,τ) for im-
ages taken after every δτ time interval. A volume is
constructed by stacking these individual images in se-
quence and applying geometric correction for distance
δτ(v) between individual slices, where v is the instan-
taneous speed of the instrument (the current data was
captured with constant unidirectional instrument veloc-
ity). It must also be noted that the individual acous-
tic images are obtained from a set of acoustic inten-
sity signals along beams by a polar transformation. The
level set equations for curve evolution in R2 extend uni-
formly to surface evolution in R3. The second differ-
ential equation also holds true for noise suppression in
a volume. Therefore, it is possible to reconstruct 3D
moving fishes with the level set evolution of these equa-
tions combined.

Processing a huge dataset demands that a minimum
of memory is consumed. We propose to keep two vol-
umes in the host memory, one for the intensity values
(I) and the other for the signed distance function (the
implicit function, φ ). The CPU manages the memory
scheduling by dividing the volumes into small subvol-
umes that can be processed on the GPU. We keep two
small 3D textures of size 128× 128× 128, IGPU and
φGPU . A complete level set update is divided into a set
of subvolume updates. Each subvolume in the two vol-
umes is fetched to the GPU via 3D textures (read only,
but with good cache coherence). Results of computa-
tions are written to CUDA memory and then transferred
back to the CPU volumes. A simplified diagram of this
is shown in Figure 2.
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Figure 2: Streaming computation.

CUDA exposes a set of very fast 16KB shared mem-
ory available to every multi-processor in a GPU. How-
ever, a 16 KB memory chunk is shared only between a
thread block, and thus to make use of it the application
must load different data for different blocks. Further-
more, the 16 KB limit poses a restriction on the amount
of data that can be loaded at any point of time. Here,
we use 3D textures for reading the data. Since we do
not want to write back to the same texture (before a sin-
gle step of filtering is complete), using the read-only
3D textures available to CUDA is a natural choice. 3D
texturing has hardware support for 3D cache which ac-
celerates any texture reads in succession. To load a

3D data (a small subset of the volume) from the global
memory into the shared memory could be a little tricky
and might not result in the same performance as pro-
vided by the specialised hardware for 3D texture cache.
In our application, data writes are made to the global
memory. The latency in writing is hidden in the data
processing since we do not synchronise the threads un-
til the end of a subvolume processing. These can further
be optimised by making use of coalesced writes.

The solution of the PDE is computed in iterations
over the full volumes. Following are the CUDA ker-
nels that were used in the updates.

5.1 Signed Distance Transform
Signed distance transform is a global operation and can-
not be implemented in a straightforward manner. We
compute a local approximation of the Euclidean dis-
tance transform using the Chamfer distance. A narrow
band distance transform is computed layer by layer us-
ing, what we call a d-pass algorithm. Every pass of
the method adds a layer of distance values on the ex-
isting distance transform. The distance values are local
distance increments computed in a 3×3×3 neighbour-
hood. Therefore, every single pass needs only local in-
formation to compute the distance values except at the
border of the sub-volume. We therefore support every
sub-volume with a one voxel cover from other adjoin-
ing sub-volumes, thereby reducing the computational
domain to a volume of size 126×126×126. The CPU
scheduler takes care of the voxel cover. At the begining,
the interface (zero level) is initialised to a used specified
bounding cuboid or a super-ellipsoid.

5.2 Average Intensities
Computing average intensities (c1 and c2) is an opera-
tion that cannot be easily computed in a parallel fash-
ion, and a reduction like method is required for the
same. We employ a slightly different scheme to com-
pute averages by using three accumulator sub-volumes
on the GPU. These accumulators are essentially 3D
sub-volumes of the same dimensions as of the textures.
Every voxel in the accumulators accumulates (adds up),
the values for H, I ·H, and I · (1−H) for all the sub-
volumes in the CPU volume(s). We then sum up the
small sub-volume on the CPU to get the final sum and
compute c1 and c2 values from it. Using a mixed mode
CPU-GPU computation not only reduces the complex-
ity of an inherently non-parallel operation, but also per-
forms better by moving less expansive parts of the com-
putation to the CPU.

5.3 Median computation
Computing median on the GPU is not very straightfor-
ward since it is an order statistic and requires that the
data be sorted. Therefore the computation of weighted
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median is very different than the one for average in-
tensity value. Since sorting values of order of millions
in every iteration of the solver is not a computationally
good solution, we resort to the alternative definition of
the median. A median is a value that divides the data-
set into two sets of equal cardinalities. This definition
is generalised for a weighted median. Therefore, for a
data-set V with weights W associated with each value
in the set, the median value Vk is the value for which the
following holds:

k

∑
i=0

Wi =
n

∑
i=k+1

Wi

This equation can only be solved iteratively, starting
with a guess index value k0. In our CUDA implemen-
tation, we start with Vk0 to be the mean value c1 and it-
eratively reach the weighted median ĉ (= Vk). In every
iteration, the increment4i for the index k0 is computed
as:

4i =



k

∑
i=0

Wi−
n

∑
i=k+1

Wi

k

∑
i=0

Wi

, if ∑
k
i=0 Wi > ∑

n
i=k+1 Wi

n

∑
i=k+1

Wi−
k

∑
i=0

Wi

n

∑
i=k+1

Wi

, if ∑
n
i=k+1 Wi > ∑

k
i=0 Wi

The increment 4i can be adaptively controlled to give
results as precise as desired.

5.4 Solver update

A PDE update in the level set method comprises of
computing the curvature energy and the external en-
ergy. In order to compute the curvature term (involv-
ing double derivatives) for a voxel in a sub-volume
by centered differencing, we need information from a
5× 5× 5 neighbourhood with the current voxel at its
center. Therefore, the sub-volume size needs a cover
of two voxels on all sides, thus reducing the computa-
tional domain further down to 124× 124× 124. The
memory schedular performs additional computations to
effectively cover the whole volume with the new setup.
Once the energy terms are computed, the PDE solver
kernel updates φGPU and uses ĉ to update IGPU . These
sub-volumes are then updated to the CPU main volume.

It is often convenient to perform anisotropic diffu-
sion on the input image so that the evolution of the level
curve is smooth and φ is well behaved. Finally, the zero
level surface is extracted from the evolved φ using the
Marching-cubes method.

6 EXPERIMENTAL RESULTS
We present experimental results on sample acoustic 2D
images to show that the suppression scheme works well
on such images. Figure 3 shows evolution of the level
set. The parameters for this evolution were chosen to
be: µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 2.5. It
can be seen that the original image suffers from speckle
noise as seen in figure 4 and that the final zero level
contour approximates the fish boundaries very well.

(a) Initial image

Iteration:4/100

(b) Zero level set and image after
four iterations

Iteration:10/100

(c) Zero level set and image after
ten iterations

Iteration:16/100

(d) End of evolution after 16 iter-
ations

Figure 3: Level set evolution on sample image. ε = 2.5.

Figure 4: The final contour shown on the part of the
original image.

We next show results of application of the level set
equation and ths noise suppression scheme on a small
3D volume of size 150× 100× 50. Fish intensities
can be identified in dark green against a noisy back-
ground. The level set equation was initialised with the
zero level set of φ0 as the bounding box of the volume.
The level set is then allowed to evolve with parameters,
µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 1.0. Figure 5
shows the evolution at different time steps and the final
level surface.

We test the CUDA solver on a larger volume of size
686×1234×100. This volume uses about 470 MB of
CPU memory along with the same amount of memory
consumed by the signed distance field. Figure 6 shows
the extracted fish trails. We test our implementation
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(a) Initial zero level surface, φ0

(b) Zero level surface after four iterations

(c) Zero level surface after six iterations

(d) End of evolution after nine iterations

Figure 5: Level set evolution on sample volume. ε =
1.0.

with the mobile GPU, GeForce 8600M GT (NVIDIA
CUDA compute capability of 1.1) with 256 MB of
memory on a Mac OS X notebook. The total number
of iterations required until convergence were 29, with a
compute time of about 67 seconds per iteration. Simi-
lar test on a faster GPU, GeForce 8800 GTX with 768
MB of memory yielded a compute time of 25 seconds
per iteration (see Table 1 for computation times for var-
ious solver operations). The signed distance field was
reconstructed in a narrow band of width 20 voxels in ev-
ery iteration. With the commodity graphics hardware,
we expect to get better speedups. Furthermore, a better
GPU with more onboard memory should allow loading

larger subvolumes, thus reducing the overhead of mul-
tiple memory transfers.

GPU→ 8600M GT 8800 GTX
Signed Distance 39.52 sec 9.47 sec

Average Intensity 3.17 sec 1.10 sec
Weighted Median 18.92 sec 11.45 sec

PDE Update 5.63 sec 3.37 sec

Table 1: Computation times for various operations
tested on two GPUs. Processed volume size is 686×
1234×100.

Figure 6: Fishes extracted from a volume of size 686×
1234×100.

In order to compare the 2D and 3D reconstructions,
we show an overlay of 2D curves over the extracted 3D
surface. This is shown in figure 7. The results agree
very well when the 2D image contains high intensity
objects. The acoustic images were taken by scanning
fishes in an aquarium and the images corresponding
to the bottom of the aquarium (time slices with higher
depth, 30 to 50 in figure 7) contain almost no fishes.
Therefore, these images contain very little useful infor-
mation. The 2D level set evolution fails to detect fishes
in these images. It is also worth mentioning that the
suppression of noise is based on weighted median and
if the images do not contain high intensities, it is pos-
sible that the estimated threshold value does not accu-
rately represent the noise level. Therefore, the 3D re-
sults should be trusted since the 2D reconstruction does
not consider information present in other image planes.
We would like to comment that a ground truth segmen-
tation is not practically possible for open sea. Evalu-
ation of the extracted fish trails/schools by domain ex-
perts is under process because of marine surveys.

While we claim that this method works on acoustic
images with high variance in intensity values resulting
in a binary segmentation of the image, it is certainly
possible to perform a segmentation resulting in more
than two segments [2].

7 CONCLUSIONS
In this paper, we presented augmentation of level set
formulation based on the Mumford-Shah functional to a
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Figure 7: Comparison of zero level 2D curves with the
zero level 3D surface.

noise suppression scheme, well suited for object recon-
struction from acoustic images. Our method is based
on computation of a threshold by weighted median of
intensity values. We prove that the method converges
with evolving level set and show that the experimental
results comply with that. We show a 3D reconstruc-
tion of objects from time series images which is useful
in tracking moving objects and to observe their kinet-
ics. An optimised GPU based implementation has been
presented for streaming computation of the large volu-
metric data.
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