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Abstract: In the paper all components of total magnetic field in the screen and onto his internal and external surface as a function 
variables r and Θ of cylindrical coordinates were calculated. Total current density induced in the screen of flat high current busduct 

was taken into account. Total magnetic field of screen is defined according to the reverse reaction between eddy currents and this 

field is an elliptical, rotating field.  
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INTRODUCTION 

One of the structural solutions for the construction of 
high current busducts is provided in the shape of the so-
called flat three-pole high current busduct [1-2] – fig. 1.  
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Fig. 1. Flat three-pole high current busduct 
 

Screened three-phase high current busducts are 
applied as reliable and safe large-current connectors (up 
to 9 kA) within the range of medium and high voltages 
(up to 275 kV) [3-7]. 

Due to large rated currents the intensity values of the 
variable magnetic fields generated by such insulated 
busducts are high even at nominal rating conditions. 
Those fields, having power frequency, exert influence on 
their own components and on the broadly understood 
environment - other devices and electric power units, 
steel structures, electronic data control, monitoring and 
transmission circuitry, the natural environment and on 
man. 
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Fig. 2. Tubular screen with an internal 
non-coaxial tubular conductor 



 

By exceeding certain permissible intensities those 
fields can lead to an irregular operation of electrical 
appliances, an overheating of steel constructions and 
deterioration of the natural environment. They can also be 
hazardous to humans [8]. All these problems can be 
traced to the issue of electromagnetic compatibility which 
requires a precise determination of intensity values for 
power frequency magnetic fields in various structural 
solutions for the construction of high current busducts. 

The magnetic field of a three-phase system is the 
superposition of the fields generated by the phase 
conductor currents or, in general, of the fields in a non-
coaxial system – fig. 2. 

In the case of single-core cables and single-pole high 
current busducts the phase conductor and the screen 
constitute a coaxial system. In this situation the magnetic 
field inside and outside the screen does not depend on the 
screen presence - the tubular shield for the magnetic field 
of the particular own bus bar is an open, anomalous  
screen. A different situation prevails in the case of a non-
coaxial phase conductor and screen, as in multi-core and 
multi-pole current busducts. In the above case the 
magnetic field inside and outside the conducting pipe 
screen depends on its presence, which shall be 
demonstrated in the present article. To be precise, we 
shall examine the magnetic field of a system consisting of 
a tubular screen and a tubular non-coaxial phase 
conductor (fig. 2). The analysis of the influence exerted 
by the conducting screen on the magnetic field 
distribution shall be restricted to an examination of this 
field in the screen and on its internal and external 
surfaces. 

1 THE PHASE CURRENT MAGNETIC FIELD 

The vectorial magnetic potential generated by the 
current 1I  (fig. 2) has only one component along the Oz 

axis and is a potential generated by an external source in 
relation to the conducting screen and according to its 
definition, in a cylindrical co-ordinate system ),,( zΦρ  
connected with another conductor, we obtain 
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where the 0A  constant can be adopted arbitrarily. 

The above vectorial magnetic potential can be expressed 
with a local cylindrical coordinate system ),,( zΘr , i.e. 
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expression into the Fourier series, at the point ),( ΘrX , 

the one for which r > d, the vectorial magnetic potential 
has the following form [ 1, 2, 9, 10] 
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We shall determine the magnetic field intensity vector 
using the vectorial magnetic potential definition in order 
to obtain 
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The w
H  magnetic field is a field generated by an 

external source in relation to the screen; therefore it is 
present in the screen, as well as on its internal and 
external surfaces. Its modulus is expressed with the 
following formula 
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2 THE MAGNETIC FIELD IN THE SCREEN OF A 

SINGLE-CORE SYSTEM 

The phase conductor magnetic field induces eddy 
currents in the screen – the so-called internal proximity 
effect takes place – fig. 3. 
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Fig. 3. Eddy currents induced in the screen 
 

The currents generate a magnetic field of reflexive 
interaction. The resultant magnetic field on the internal 
and external screen surfaces is the vectorial sum of the 
appropriate reflexive interaction field and the field 
generated by the current in the phase conductor. If we 
restrict our analysis to an examination of the influence 
exerted by the conducting screen on the magnetic field 
distribution only on the internal and external surfaces of 
the screen, we can take advantage of the solution 
presented in the papers [9, 10] in which the density of the 
current induced in the screen is expressed with the 
following formula 
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In the above formulas the complex propagation constant 
of the electromagnetic wave in the conducting screen is 



 

expressed with the following equation ee
Γ γωµ0j= , 

where ω denotes the phase current ripple, 
-17

0 mH 104 ⋅= −πµ  the magnetic permeability of free 

space and eγ  is the screen conductivity. The functions 
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 are the modified Bessel functions 

of respectively the first and second kind in the zero order. 
The constant data are expressed with the following 
formulas: 
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The function )( rΓI en , )( rΓK en , )( 41 RΓI en− , 

)( 31 RΓK en+ , )( 31 RΓI en+  and )( 41 RΓK en−  which appear in 

the above formulas are the modified Bessel functions of 
respectively the first and second kind in the nth, n-1 and 
n+1 orders. 

Next, from the second Maxwell equation 
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field in the screen under analysis ( 43 RrR ≤≤ ) 
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where the radial component 
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1 From the paper [11] using the formula (167) on page 281 for 

1=n  we derive )()( 11 rΓIrΓI =−  and using the formula (212) 

on page 285 we derive )()( 11 rΓKrΓK =− . From the formulas 
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The tangent component is expressed by the sum of those 
components 0=n  and 1≥n , i.e. 
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The first addend ( 0=n ) 
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For the second addend ( 1≥n ) 
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If a phase conductor is placed on the left of the screen 
axis, the magnetic field in all the areas is expressed with 
the above formulas supplemented with the (-1)n factor. It 
enables magnetic field analysis of screened single-phase 
systems, as well as three-phase flat and symmetric ones. 

3 THE ELLIPTIC MAGNETIC FIELD 

The amplitudes of the intensity components of the 
magnetic field in the screen are not identical, while the 
components also have different initial phases, i.e. 

 ),(),( 11 ΘrHΘrH Θere ≠ and  ),(),( 11 ΘrΘr Θere ϕϕ ≠ . 
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Fig. 4. The elliptic magnetic field 

 
In that case, along with the change in time, during one 

period T, the end of the resultant vector, in function of the 
phase shift reΘe 11 ϕϕϕ −=  of the vector components, 

traces a straight line or ellipsis whose semi-major axis 
value aH  (fig. 4), the field modulus, does not equal the 

root of the squares of the magnetic field component 
amplitudes. We can then derive [8], denoting the semi-
major axis quantity as 
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4 THE MAGNETIC FIELD IN THE SCREEN OF A 

FLAT THREE-PHASE SYSTEM 

The magnetic field in the screen ( )43 RrR ≤≤ is 

defined with the following formula 
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H  magnetic field is expressed with the 

formula (6). The ),(2 Θr
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H  magnetic field has only one 

tangent component  
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The ),(3 ΘreH magnetic field components are expressed 

as 
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If the phase currents are symmetric, i.e. 
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the total magnetic field in the screen of the flat three-
phase high current busduct can be compared with the 
following field 
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We then derive formulas to obtain the relative 
components of the total magnetic field in the screen 
( 43 RrR ≤≤  or 1≤≤ ξβ ) in the following forms: 
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In these formulas the relative distance between the 

conductors 
3R

d
=λ   ( 10 <≤ λ ), the relative variable 
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and 4
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α = . The distribution of these 

components is depicted in figures 5 and 6. 
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Fig. 5. The radial component distribution for the total 
magnetic field in the screen of the flat three-phase high 

current busduct: a) the modulus, b) the argument 
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Fig. 6. The tangent component distribution for the total 
magnetic field in the screen of the flat three-phase high 

current busduct: a) the modulus, b) the argument 
 
The ),( Θr

e
H  field component arguments are 

functions of the variables Θ  and  ξ , which means the 
field is an ellipsis whose semi-major axis value is 
expressed with the formula (8a). The distribution of this 
quantity in the screen for various values of the parameter 
α in the angle function Θ is depicted in figure 7.  

 

Β=0.8 Ξ=0.85

Λ=0.5

Α=2

Α=5

Α=20

0.5 1.0 1.5 2.00.51.01.52.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0
 

 

Fig. 7. The distribution of the relative modulus quantity 
of the total magnetic field in the screen 

of the flat three-phase high current busduct 
 
If we assume βξ = in the formulas derived above, we 

obtain the magnetic field on the internal surface of the 
screen – fig. 8, 9 and 10. 
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Fig. 8. The distribution of the radial component of the 
total magnetic field on the internal screen surface: 

a) the modulus, b) the argument 
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Fig. 9. The distribution of the tangent component of the 

total magnetic field on the internal screen surface: 
 a) the modulus, b) the argument 
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Fig. 10. The distribution of the total magnetic field 
modulus for the internal screen surface  



 

In a similar manner, assuming 1=ξ , we obtain the 

magnetic field on external surface of the screen – fig. 11, 
12 and 13. 
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Fig. 11. The distribution of the radial component of the 
total magnetic field on the external screen surface: 

a) the modulus, b) the argument 
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Fig. 12. The distribution of the tangent component of the 
total magnetic field on the external screen surface: 

a) the modulus, b) the argument 
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Fig. 13. The distribution the total magnetic field modulus 
for the external screen surface 

5 CONCLUSIONS 

From the above figures it follows that the magnetic 
field intensity in the screen and on its internal and 
external surfaces assumes the highest values at points 
lying in the closest proximity to the phase conductors. 
Despite the current symmetry the magnetic field intensity 
distribution is asymmetric. The field is a harmonious, 
rotating field. 

The magnitude of the magnetic field changes depends 
on the coefficients λ and α, i.e. on the screen conductivity 
and crosswise dimensions and the current frequency in 
the phase conductors. With the rise of the parameter α the 
intensity value of the magnetic field on the internal screen 
surface grows, while in the screen itself we observe a 
certain reduction in this field. However, on the external 
surface this reduction is significant. It is the result of the 
reflexive interaction of eddy currents induced in the 
screen. Such a screen is no longer the so-called open, 
anomalous screen – the field in the external area depends 
on the screen presence. 

As regards already implemented high current 
busducts, at industrial frequency, the α  parameter value 
is within the range of 10 to 20. Within this range, as 
demonstrated in figures 7, 10 i 13, the magnetic field 
changes in the screen, on its internal surface and, in 
particular, on its external surface are significant. Hence 
the conclusion that an analysis of the magnetic field of 
the screened busduct in question should allow for the 
presence of a conducting screen also in the case of power 
frequency. 
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